3.132 \(\int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=224 \[ \frac {4 e^3}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {4 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{15 a^2 d e^2 \sqrt {\sin (c+d x)}}-\frac {4 e}{5 a^2 d (e \sin (c+d x))^{5/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {4 \cos (c+d x)}{15 a^2 d e \sqrt {e \sin (c+d x)}} \]

[Out]

4/9*e^3/a^2/d/(e*sin(d*x+c))^(9/2)-2/9*e^3*cos(d*x+c)/a^2/d/(e*sin(d*x+c))^(9/2)-2/9*e^3*cos(d*x+c)^3/a^2/d/(e
*sin(d*x+c))^(9/2)-4/5*e/a^2/d/(e*sin(d*x+c))^(5/2)+16/45*e*cos(d*x+c)/a^2/d/(e*sin(d*x+c))^(5/2)-4/15*cos(d*x
+c)/a^2/d/e/(e*sin(d*x+c))^(1/2)+4/15*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(
cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*sin(d*x+c))^(1/2)/a^2/d/e^2/sin(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.66, antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3872, 2875, 2873, 2567, 2636, 2640, 2639, 2564, 14} \[ \frac {4 e^3}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {4 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{15 a^2 d e^2 \sqrt {\sin (c+d x)}}-\frac {4 e}{5 a^2 d (e \sin (c+d x))^{5/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {4 \cos (c+d x)}{15 a^2 d e \sqrt {e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sec[c + d*x])^2*(e*Sin[c + d*x])^(3/2)),x]

[Out]

(4*e^3)/(9*a^2*d*(e*Sin[c + d*x])^(9/2)) - (2*e^3*Cos[c + d*x])/(9*a^2*d*(e*Sin[c + d*x])^(9/2)) - (2*e^3*Cos[
c + d*x]^3)/(9*a^2*d*(e*Sin[c + d*x])^(9/2)) - (4*e)/(5*a^2*d*(e*Sin[c + d*x])^(5/2)) + (16*e*Cos[c + d*x])/(4
5*a^2*d*(e*Sin[c + d*x])^(5/2)) - (4*Cos[c + d*x])/(15*a^2*d*e*Sqrt[e*Sin[c + d*x]]) - (4*EllipticE[(c - Pi/2
+ d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(15*a^2*d*e^2*Sqrt[Sin[c + d*x]])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
 f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2875

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[((g*Cos[e + f*x])^(2*m + p)*(d*Sin[e + f*x])^n)/(a - b*Sin[e +
 f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3872

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[((g*C
os[e + f*x])^p*(b + a*Sin[e + f*x])^m)/Sin[e + f*x]^m, x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx &=\int \frac {\cos ^2(c+d x)}{(-a-a \cos (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx\\ &=\frac {e^4 \int \frac {\cos ^2(c+d x) (-a+a \cos (c+d x))^2}{(e \sin (c+d x))^{11/2}} \, dx}{a^4}\\ &=\frac {e^4 \int \left (\frac {a^2 \cos ^2(c+d x)}{(e \sin (c+d x))^{11/2}}-\frac {2 a^2 \cos ^3(c+d x)}{(e \sin (c+d x))^{11/2}}+\frac {a^2 \cos ^4(c+d x)}{(e \sin (c+d x))^{11/2}}\right ) \, dx}{a^4}\\ &=\frac {e^4 \int \frac {\cos ^2(c+d x)}{(e \sin (c+d x))^{11/2}} \, dx}{a^2}+\frac {e^4 \int \frac {\cos ^4(c+d x)}{(e \sin (c+d x))^{11/2}} \, dx}{a^2}-\frac {\left (2 e^4\right ) \int \frac {\cos ^3(c+d x)}{(e \sin (c+d x))^{11/2}} \, dx}{a^2}\\ &=-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {\left (2 e^2\right ) \int \frac {1}{(e \sin (c+d x))^{7/2}} \, dx}{9 a^2}-\frac {\left (2 e^2\right ) \int \frac {\cos ^2(c+d x)}{(e \sin (c+d x))^{7/2}} \, dx}{3 a^2}-\frac {\left (2 e^3\right ) \operatorname {Subst}\left (\int \frac {1-\frac {x^2}{e^2}}{x^{11/2}} \, dx,x,e \sin (c+d x)\right )}{a^2 d}\\ &=-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {2 \int \frac {1}{(e \sin (c+d x))^{3/2}} \, dx}{15 a^2}+\frac {4 \int \frac {1}{(e \sin (c+d x))^{3/2}} \, dx}{15 a^2}-\frac {\left (2 e^3\right ) \operatorname {Subst}\left (\int \left (\frac {1}{x^{11/2}}-\frac {1}{e^2 x^{7/2}}\right ) \, dx,x,e \sin (c+d x)\right )}{a^2 d}\\ &=\frac {4 e^3}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {4 e}{5 a^2 d (e \sin (c+d x))^{5/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {4 \cos (c+d x)}{15 a^2 d e \sqrt {e \sin (c+d x)}}+\frac {2 \int \sqrt {e \sin (c+d x)} \, dx}{15 a^2 e^2}-\frac {4 \int \sqrt {e \sin (c+d x)} \, dx}{15 a^2 e^2}\\ &=\frac {4 e^3}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {4 e}{5 a^2 d (e \sin (c+d x))^{5/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {4 \cos (c+d x)}{15 a^2 d e \sqrt {e \sin (c+d x)}}+\frac {\left (2 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{15 a^2 e^2 \sqrt {\sin (c+d x)}}-\frac {\left (4 \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{15 a^2 e^2 \sqrt {\sin (c+d x)}}\\ &=\frac {4 e^3}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {4 e}{5 a^2 d (e \sin (c+d x))^{5/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {4 \cos (c+d x)}{15 a^2 d e \sqrt {e \sin (c+d x)}}-\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{15 a^2 d e^2 \sqrt {\sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.44, size = 163, normalized size = 0.73 \[ \frac {\sec ^4\left (\frac {1}{2} (c+d x)\right ) (\cos (c+d x)+i \sin (c+d x)) \left (e^{-2 i (c+d x)} \sqrt {1-e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}\right )^4 \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};e^{2 i (c+d x)}\right )+16 i \sin (c+d x)+13 i \sin (2 (c+d x))-40 \cos (c+d x)-19 \cos (2 (c+d x))-31\right )}{180 a^2 d e \sqrt {e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sec[c + d*x])^2*(e*Sin[c + d*x])^(3/2)),x]

[Out]

(Sec[(c + d*x)/2]^4*(Cos[c + d*x] + I*Sin[c + d*x])*(-31 - 40*Cos[c + d*x] - 19*Cos[2*(c + d*x)] + ((1 + E^(I*
(c + d*x)))^4*Sqrt[1 - E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((2*I)*(c + d*x))])/E^((2*I)*(c
 + d*x)) + (16*I)*Sin[c + d*x] + (13*I)*Sin[2*(c + d*x)]))/(180*a^2*d*e*Sqrt[e*Sin[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {e \sin \left (d x + c\right )}}{a^{2} e^{2} \cos \left (d x + c\right )^{2} - a^{2} e^{2} + {\left (a^{2} e^{2} \cos \left (d x + c\right )^{2} - a^{2} e^{2}\right )} \sec \left (d x + c\right )^{2} + 2 \, {\left (a^{2} e^{2} \cos \left (d x + c\right )^{2} - a^{2} e^{2}\right )} \sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(e*sin(d*x + c))/(a^2*e^2*cos(d*x + c)^2 - a^2*e^2 + (a^2*e^2*cos(d*x + c)^2 - a^2*e^2)*sec(d*x
+ c)^2 + 2*(a^2*e^2*cos(d*x + c)^2 - a^2*e^2)*sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \left (e \sin \left (d x + c\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*(e*sin(d*x + c))^(3/2)), x)

________________________________________________________________________________________

maple [A]  time = 4.42, size = 213, normalized size = 0.95 \[ \frac {\frac {4 e^{3} \left (9 \left (\cos ^{2}\left (d x +c \right )\right )-4\right )}{45 a^{2} \left (e \sin \left (d x +c \right )\right )^{\frac {9}{2}}}+\frac {\frac {4 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sin ^{\frac {11}{2}}\left (d x +c \right )\right ) \EllipticE \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )}{15}-\frac {2 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sin ^{\frac {11}{2}}\left (d x +c \right )\right ) \EllipticF \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )}{15}+\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{15}-\frac {38 \left (\sin ^{5}\left (d x +c \right )\right )}{45}+\frac {46 \left (\sin ^{3}\left (d x +c \right )\right )}{45}-\frac {4 \sin \left (d x +c \right )}{9}}{e \,a^{2} \sin \left (d x +c \right )^{5} \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x)

[Out]

(4/45*e^3/a^2/(e*sin(d*x+c))^(9/2)*(9*cos(d*x+c)^2-4)+2/45/e*(6*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*s
in(d*x+c)^(11/2)*EllipticE((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))-3*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*s
in(d*x+c)^(11/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+6*sin(d*x+c)^7-19*sin(d*x+c)^5+23*sin(d*x+c)^3-1
0*sin(d*x+c))/a^2/sin(d*x+c)^5/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^2}{a^2\,{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*sin(c + d*x))^(3/2)*(a + a/cos(c + d*x))^2),x)

[Out]

int(cos(c + d*x)^2/(a^2*(e*sin(c + d*x))^(3/2)*(cos(c + d*x) + 1)^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(d*x+c))**2/(e*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________